

Carnegie Mellon University

Dissimilarity Measures for Clustering Space Mission Architectures

Cody Kinneer

Institute for Software Research, Carnegie Mellon University

Sebastian J. I. Herzig

Jet Propulsion Laboratory, California Institute of Technology

18 October 2018 - ACM/IEEE MODELS Conference, Copenhagen, Denmark

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech. All content is public domain information and / or has previously been cleared for unlimited release.

Robotic Space Exploration

The JPL Product Lifecycle

Networked Constellations of Spacecraft

JPL Interplanetary Network Initiative

- Small spacecraft may enable the development of innovative low-cost networks and multi-asset science missions
- Goal of initiative is to develop new technologies that support novel mission concept proposals & influence Decadal Survey
 - New approaches to communication, system design, and operations required
 - Our task's work focuses on design and trade space exploration

Motivating Case Study

Spacecraft-Based Radio Interferometry

Source: http://www.passmyexams.co.uk/GCSE/physics/images/radio-telescopes-outdoors.jpg

Want to do this in space:

- Frequencies < 30Mhz blocked by ionosphere
- Cluster of spacecraft (3 50)
 functioning as telescopes in LLO
- CubeSats or SmallSats are promising enablers for this

Radio interferometers:

- Radio telescopes consisting of multiple antennas
- Achieve the same angular resolution as that of a single telescope with the same aperture
- → Typically ground-based

Which Architecture is Optimal?

Challenge: transmit very large data volume from LLO to Earth

- How many spacecraft?
- Are all equipped with interferometry payload? Are some just relays?
- Who communicates with Earth?
- What frequency bands? Multi-hop?
- ...
- Optimal w.r.t. cost? Science value?

Which Architecture is Optimal?

Mission Architecture Trade Space Exploration

Mechanized Exploration

"A constellation mission consists of at least 2 spacecraft and at most 100"

"A spacecraft can, but does not have to contain the interferometry payload"

"Operation of the interferometry payload operation requires power"

Solution Generation

Models in domain

"Constellation mission A with 3 spacecraft, one of which has a payload and solar cells"

Problem Description

Which models in the domain are we looking for?

In practice, too many possible solutions to generate & compare all

→ View as a search problem

Mission Architecture Trade Space Exploration

Mechanized Exploration

Abstraction of Domain

"A constellation mission consists of at least 2 spacecraft and at most 100"

"A spacecraft can, but does not have to contain the interferometry payload"

"Operation of the interferometry payload operation requires power"

Solution Search

Models in domain

"Constellation mission A with 3 spacecraft, one of which has a payload and solar cells"

Problem Description

Which models in the domain are we looking for?

In practice, too many possible solutions to generate & compare all

View as a search problem

Application to Case Study

Representation of Domain (Excerpt)

20 concepts, 9 associations, 15 attributes / parameters

> 48¹⁰ possible models

Too many for exhaustive search

Problem: Too Many Architectures!

Idea: Clustering Similar Architectures

Overview of Approach

Distance Measure?

Distance Measure?

- Feature selection
- EMF Compare
- Graph-edit distance

Feature Selection

EMF Compare

Graph-edit Distance

Feature Selection

EMF Compare

Graph-edit Distance

Validation

- Manual clustering task
- Given pairs, assign a distance score
- Caveats
 - 31 pairs, two groups of 2-3

Results

	Group 1	Group 2	Features (All)	Features (Assets)	Features (Objectives)	Graph- edit Distance	EMF Compare
Group 1	1	0.01	0.06	0.19	0.12	0.16	0.88
Group 2	0.501	1	0.05	0.00	0.26	0.28	0.54
Features (All)	0.364	0.386	1	0.02	0.00	0.01	0.00
Features (Assets)	0.263	0.560	0.436	1	0.08	0.14	0.46
Features (Objectives)	0.304	0.223	0.869	0.341	1	0.03	0.03
Graph-edit Distance	0.276	0.217	0.464	0.289	0.429	1	0.00
EMF Compare	0.029	0.123	0.536	0.147	0.424	0.789	1

Insights from human designers

Keyword	Group 1	Group 2
relay	2	5
bands	2	3
layers / levels	2	6
SmallSats	2	2
threads	0	2

Conclusions

- Clustering has the potential to enable more through analysis of the architectural trade space
- Dissimilarity measures for space mission architectures are nontrivial, and have trade-offs in granularity, extensibility, and types of considered information
- Discussed insights from human clustering task, importance of a range of options

Clustering is a promising approach for design space exploration

Cody Kinneer ckinneer@cs.cmu.edu

jpl.nasa.gov

Government sponsorship acknowledged. All technical data was obtained from publicly available sources and / or is fictitious.

Backup Slides

ACM/IEEE MODELS 2018 Presentation on "Dissimilarity Measures for Clustering Space Mission Architectures"

Example Mission Architecture

- Number of spacecraft
- Type of spacecraft
- Directed communication links
- Communication equipment
 - Gain
 - Band
- Ground station
- Payload

Implementation

Open Source Technologies Used in Implementation

- Representation of Domain
 - → Ecore / Eclipse EMF + OCL

- **Exploration Rules**
 - → Henshin

Optimization Using Genetic Algorithms

→ MOMoT, MOEA

Framework

CDS for Mission Architecture Design

Application to Case Study

Link Calculations

 Derived from standard link budget, assuming above average noise due to expected interference from Moon

Table 1. Computed communication rates. 385k km case assumes 72 dBi receive antenna gain for X-band, and 85 dBi for Ka-band (similar to DSN).

Transmitter Configuration	200 km	385k km
UHF, 3 W, 1 dBi	5 Mbps	-
X-Band, 5 W, 10 dBi	1.6 Mbps	0.7 Mbps
Ka-Band, 15 W, 25 dBi	220 Mbps	80 Mbps

Cost Calculations

- Cost per spacecraft calculation incorporates a learning curve
- Assuming \$ 100,000 per hour of observation to estimate observation and data processing cost

$$c_i = c_{base,type(i)} \cdot n_{type(i)}^{-0.25} + c_{conf,i}$$
 (5)

$$c_{total} = \sum_{i=1}^{n_{sc}} c_i + 100,000t_{obs}$$
 (6)

Coverage

Simple coverage calculation

$$cov = \left(1 - \frac{2}{n_{obs}}\right)^{1 + 9(1/t_{obs})} + 0.05 \frac{t_{obs}}{3} \tag{1}$$

 Surrogate model that reflects trends observed from more sophisticated telescope array simulation performed by Alexander Hegedus (https://github.com/alexhege/Orbital-APSYNSIM/)

Model-Transformation-Based Exploration

Model Transformation Rules as Enablers for Evolving Solutions

- Transformation Rules
 - LHS: Condition for match in input model (e.g., "find an element of type Mission")
 - RHS: Operation to be performed (e.g., "create a new element of type S/C (Spacecraft) and attach it to the matched mission")
- Here: endogenous transformations
 - Source and target metamodels are the same
- Used for generating models in domain (~design rules)

Rule "addPayload"

Model-Transformation-Based Exploration

Activation of addPayload rule

Forming the Model State Space **Initial state** : Mission : Mission (could be empty) sc1: S/C sc1: S/C : Mission sc2: S/C sc2 : S/C sc1: S/C p1: Payload Recurring state : Mission : Mission sc1: S/C sc1: S/C p1: Payload Can represent wellp1: Payload formed solutions as sc2: S/C sequences of transformations that lead to valid model state Activation of **createSpacecraft** rule Model state

Evaluating the Objectives

- Evaluating objectives requires analysis of the candidate solution (interpretation by a solver)
 - Determine performance and determine values for measures of effectiveness
 - Determine objective function values
- Analyses defined at level of domain: part of formal interpretation of models within domain

"Scientific value of candidate 1 is 0.34"

Driving Exploration Towards Optima

Using Evolutionary Algorithms to find Pareto-Optimal Solutions

Crossover

Individual x: (Selection from population) Individual y:

Here, individuals are **sequences of transformation rule activations**→ Each genome in population is a variable with set of trafo rules as range

New:

(Recombined individual in next generation)

Driving Exploration Towards Optima

Models Resulting from Executing Transformations

Transformation Rule Example (Henshin Syntax): Add Comm. Link

In Prose: "Find 2 distinct spacecraft instances, and add a communication link between them"

- Three objectives:
 - Minimize cost
 - Maximize coverage (measure of scientific benefit)
 - Minimize mission time
- Typical link budget for data rates
- Data collection & transfer model
- Abstracted away orbit design through coverage model
- Experiment setup:
 - 16 transformation rules
 - 180 variables per individual
 - NSGA-II with population size
 1000, and 1000 generations
 - 30 runs, 7 minutes each*

<u>Fictitious</u> cost model (top) and coverage model (bottom)

^{* 8} core Intel i7 @ 2.7Ghz, 16GB DDR3 RAM

Results from Application to Case Study

Visualization of Trade Space

Results from Application to Case Study

Examples of Pareto-Optimal (Nondominated) Solutions

Domain Model & Well-Formedness Constraints

- Domain model (meta-model)
 - Concepts
 - Associations / relations
 - Attributes
 - → Describes a universe of discourse: many models in domain
 - Describes structural part of the problem

Typically annotated with addl. — well-formedness constraints, e.g.:

"No communication loops may exist"

"All spacecraft must (transitively) be connected to at least one ground station through a communication link"

Any model in the domain is a (structurally) valid solution